WGA Viewer software from Duke University

A genome-wide association (GWA) study often involves analyzing the effects of 100,000s of single nucleotide polymorphisms (SNPs) on a disease outcome or trait. Visualizing such high density data can often prove tricky, especially if the investigator is interested in specific regions.

I have recently discovered a free tool called WGAviewer from the Duke University (http://people.genome.duke.edu/~dg48/WGAViewer/) that can greatly help with the visualization part (it does not perform any analysis). The software is based on Java so should be platform independent (I only used and tested it for Windows so far). Some of the key features includes:

  1. QQ plots
  2. Manhattan plots with *interactive zoom* in and out
  3. Zoom to a region by gene name or region easily and visualize results
  4. Ablity to select and annotate the top N snps
  5. Automatic update of annotation on Ensembl and HapMap data
  6. Calculate LD linkage for a particular region etc
  7. Take publication quality snapshot pictures

One of the hassles I found was formatting the data for input. The documentations suggest several ways of making the data input using MAP files etc in the manual. However, the easiest way I found was to simply create a space-separated ASCII file (using R or even Excel) with the following columns: rsid, chromosome (1-22, X, Y, XY, M), Map (coordinate on the chromosome) and -logP (log base 10 of p-values).

SNP chromosome Map -logP
MitoA10045G M 10045 2.04858284222835
MitoT9900C M 9900 0.233064674990652
MitoT9951C M 9951 0.0641728753170715
rs1000000 12 125456933 1.16139248878691
rs10000010 4 21227772 0.149317624784192
rs10000023 4 95952929 1.15832462919552
rs10000030 4 103593179 0.106028436059944
rs10000041 4 165841405 0.221366644208304
rs1000007 2 237416793 0.213983677592946

You will need to create and load one file per analysis which is bit annoying if you have many analyses to visualize. I hope they add new features to visualize and (even better) compare different results in the near future. Imagine being able to superimpose manhattan plots from two different studies or techniques together!


Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s